Abstract

The technique of two-dimensional electrophoresis was used in combination with a highly sensitive silver stain to study vitamin D-dependent calcium-binding protein (CaBP) in rat kidney. Rat renal CaBP was shown to co-migrate almost exactly with CaBP purified from chick intestine suggesting evolutionary conservation of this protein. In some cases rat renal CaBP appeared not as a single polypeptide, but rather as a cluster of 4 polypeptides. Formation of the satellite cluster of CaBP in response to high doses of 1,25-dihydroxyvitamin D3 occurred in young rats which had been maintained on a vitamin D-deficient diet for 2 weeks, as well as in older rats which had been maintained on the same diet for 5 months. The 4 forms of CaBP were not the result of various states of Ca2+ binding, but rather the result of an enzymatic reaction. This was shown by 3 experiments. 1) Adding excess EGTA to samples containing the 4 satellite forms did not change the two-dimensional electrophoretogram. 2) Incubation of purified chick intestinal CaBP with kidney cytosols from D-deficient rats brought about the formation of the satellite CaBP forms from the chick protein. However, purified chick CaBP was unchanged by incubation in buffer alone for up to 2 h at 37 degrees C. 3) Placing rat kidney cytosols in a boiling water bath for 10 min inactivated the factor which generated the satellite forms as would be expected for an enzyme. The physiological significance of these forms of CaBP is as yet unknown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call