Abstract

Fluorescent mechanophores can indicate the deformation or damage in polymers. The development of mechanophores with multi-triggered response is of great interest. Herein, Diels-Alder (DA) adducts are incorporated into linear poly(methyl acrylate) PMA-BA and network poly(hexyl methacrylate) (PHMA) as mechanophores to detect the stress caused by ultrasound, freezing, and compression. The DA mechanophores undergo retro-DA reaction to release 9-styrylanthracene chromophore upon applying force, resulting in cyan fluorescence. The dissociation ratio of the DA mechanophore after pulsed ultrasonication of PMA-BA solution for 240 minutes is estimated to be 52 % by absorption spectra and 1H NMR. Additionally, the rate constant of mechanical cleavage is calculated to be 1.2×10-4 min-1⋅kDa-1 with the decrease in molecular weight from 69 to 22 kDa measured by gel permeation chromatography. Freezing of PHMA gels as well as compression of PHMA bulk samples turn-on the DA mechanophores, revealing the microscale fracture. Photon upconversion responses toward various force stimuli are also achieved in both polymer solutions and bulk samples by doping platinum octaethylporphyrin (PtOEP) or palladium meso-tetraphenyltetrabenzoporphyrin (PdTPTBP) sensitizers with multiple excitation wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.