Abstract

Polar coding is known as the first provably capacity-achieving coding scheme under low-complexity suboptimal successive cancelation decoding (SCD). The large error-correction capability of finite-length polar codes is mostly achieved with relatively long codes. SCD is the conventional decoder for polar codes and exhibits a quasi-linear complexity in terms of the code length. Practical decoder schemes with low latency are important for high-speed polar coding applications. In this letter, we propose a nonbinary multiple folded SCD scheme to reduce the decoding latency of standard binary polar codes. Multiple foldings were first proposed to improve the efficiency of folded tree maximum-likelihood decoder for Kronecker product-based codes. By successively applying the folding operation κ times on the SCD, for a code length N, the latency is reduced from 2N - 1 to (N/2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">κ-1</sup> ) - 1 time slots, assuming full parallelization. We show that multiple folded SCD can be effectively implemented for up to κ = 3 foldings due to memory limitations. This decoder achieves exactly the same performance of the original SCD with significantly reduced latency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.