Abstract
The convection induced by buoyancy effects in a porous square cavity has been investigated numerically using a spectral element code with bifurcation tools. The complex bifurcation diagram initiated from the first six primary bifurcation points corresponding to the onset of convection from the trivial no‐flow solution has been calculated. Four branches of stable steady solutions have been found, corresponding to one‐roll, two‐roll, three‐roll and four‐roll flow structures. The domain of existence of these stable solutions, i.e., the Rayleigh number (Ra) range in which such solutions can potentially be observed, has been precisely determined. It is shown that there exist Ra ranges where different flow solutions can be stable together. The stable branches all terminate at Hopf bifurcation points beyond which oscillatory solutions have been computed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.