Abstract

PurposeContent‐based image retrieval (CBIR) is an important research area for automatically retrieving images of user interest from a large database. Due to many potential applications, facial image retrieval has received much attention in recent years. Similar to face recognition, finding appropriate image representation is a vital step for a successful facial image retrieval system. Recently, many efficient image feature descriptors have been proposed and some of them have been applied to face recognition. It is valuable to have comparative studies of different feature descriptors in facial image retrieval. And more importantly, how to fuse multiple features is a significant task which can have a substantial impact on the overall performance of the CBIR system. The purpose of this paper is to propose an efficient face image retrieval strategy.Design/methodology/approachIn this paper, three different feature description methods have been investigated for facial image retrieval, including local binary pattern, curvelet transform and pyramid histogram of oriented gradient. The problem of large dimensionalities of the extracted features is addressed by employing a manifold learning method called spectral regression. A decision level fusion scheme fuzzy aggregation is applied by combining the distance metrics from the respective dimension reduced feature spaces.FindingsEmpirical evaluations on several face databases illustrate that dimension reduced features are more efficient for facial retrieval and the fuzzy aggregation fusion scheme can offer much enhanced performance. A 98 per cent rank 1 retrieval accuracy was obtained for the AR faces and 91 per cent for the FERET faces, showing that the method is robust against different variations like pose and occlusion.Originality/valueThe proposed method for facial image retrieval has a promising potential of designing a real‐world system for many applications, particularly in forensics and biometrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.