Abstract
Action recognition is important for understanding the human behaviors in the video, and the video representation is the basis for action recognition. This paper provides a new video representation based on convolution neural networks (CNN). For capturing human motion information in one CNN, we take both the optical flow maps and gray images as input, and combine multiple convolutional features by max pooling across frames. In another CNN, we input single color frame to capture context information. Finally, we take the top full connected layer vectors as video representation and train the classifiers by linear support vector machine. The experimental results show that the representation which integrates the optical flow maps and gray images obtains more discriminative properties than those which depend on only one element. On the most challenging data sets HMDB51 and UCF101, this video representation obtains competitive performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.