Abstract

Binding equilibria of long-chain fatty acids to human serum albumin, in serum or plasma, were studied by a dialysis exchange rate technique. Palmitate was added to citrated plasma in vitro and it was observed that between six and ten palmitate molecules were bound to albumin with nearly equal affinity. Observations in vivo gave similar results in the following series: (a) in two volunteers with increased fatty acid concentrations after fasting, exercise, and a cold shower: (b) in three male volunteers in whom high concentrations of non-esterified fatty acids, up to 4.6 mM, were induced by intravenous administration of a preparation of lecithin/glycocholate mixed micelles, and (c) in 81 patients with diabetes mellitus, type I. The binding pattern of palmitate in serum or plasma is essentially different from that observed with palmitate added to buffered solutions of pure albumin when two molecules are tightly bound and about four additional molecules with lower affinity. The differences may partly be explained by the presence of chloride ions in blood plasma, reducing the affinity for binding of the first two fatty acid molecules, and partly by facilitated binding of several molecules of mixed fatty acids, as found in plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.