Abstract
Biological nitrogen fixation plays an important role in nitrogen cycling by transferring atmospheric N2 to plant-available N in the soil. However, the diazotrophic activity and distribution in different types of soils remain to be further explored. In this study, 152 upland soils were sampled to examine the diazotrophic abundance, nitrogenase activity, diversity and community composition by quantitative polymerase chain reaction, acetylene reduction assay and the MiSeq sequencing of nifH genes, respectively. The results showed that diazotrophic abundance and nitrogenase activity varied among the three soil types. The diazotrophic community was mainly dominated by Bradyrhizobium, Azospirillum, Myxobacter, Desulfovibrio and Methylobacterium. The symbiotic diazotroph Bradyrhizobium was widely distributed among soils, while the distribution of free-living diazotrophs showed large variation and was greatly affected by multiple factors. Crop type and soil properties directly affected the diazotrophic ɑ-diversity, while soil properties, climatic factors and spatial distance together influenced the diazotrophic community. Network structures were completely different among all three types of soils, with most complex interactions observed in the Red soil. These findings suggest that diazotrophs have various activities and distributions in the three soil types, which played different roles in nitrogen input in agricultural soil in China, being driven by multiple environmental factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.