Abstract

Isolated populations ultimately go extinct because of the intrinsic noise of elementary processes. In multipopulation systems extinction of a population may occur via more than one route. We investigate this generic situation in a simple predator-prey (or infected-susceptible) model. The predator and prey populations may coexist for a long time, but ultimately both go extinct. In the first extinction route the predators go extinct first, whereas the prey thrive for a long time and then also go extinct. In the second route the prey go extinct first, causing a rapid extinction of the predators. Assuming large subpopulation sizes in the coexistence state, we compare the probabilities of each of the two extinction routes and predict the most likely path of the subpopulations to extinction. We also suggest an effective three-state master equation for the probabilities to observe the coexistence state, the predator-free state, and the empty state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.