Abstract

The objective of this investigation was to examine the impact of multiple exposures to general anesthesia (GA) with sevoflurane on the offspring of pregnant mice, as well as to elucidate the underlying mechanism. Neurodevelopmental assessments, including various reflexes and behavioral tests, were conducted on the offspring in the GA group to evaluate neuronal cell development. Furthermore, neonatal mouse neuronal cells were isolated and transfected with a high-expression CREB vector (pcDNA3.1-CREB), followed by treatment with sevoflurane (0.72mol/L), ZD7288 (50μmol/L), and KN-62 (10μmol/L), or a combination of these compounds. The expression of relevant genes was then analyzed using qRT-PCR and western blot techniques. In comparison to the sham group, neonatal mice in the GA group exhibited significantly prolonged latencies in surface righting reflex, geotaxis test, and air righting reflex. Furthermore, there was a notable deceleration in the development of body weight and tail in the GA group. These mice also displayed impairments in social ability, reduced reciprocal social interaction behaviors, diminished learning capacity, and heightened levels of anxious behaviors. Additionally, synaptic trigger malfunction was observed, along with decreased production of c-Fos and neurotrophic factors. Sevoflurane was found to notably decrease cellular c-Fos and neurotrophic factor production, as well as the expression of HCN2 and CaMKII/CREB-related proteins. The inhibitory effects of sevoflurane on HCN2 or CaMKII channels were similar to those observed with ZD7288 or KN-62 inhibition. However, overexpression of CREB mitigated the impact of sevoflurane on neuronal cells. Repetitive exposure to sevoflurane general anesthesia while pregnant suppresses the CaMKII/CREB pathway, leading to the development of autism-like characteristics in offspring mice through the reduction of HCN2 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.