Abstract

Abstract Planetary systems that show single-transit events are a critical pathway to increasing the yield of long-period exoplanets from transit surveys. From the primary Kepler mission, KIC 5951458 b (Kepler-456b) was thought to be a single-transit giant planet with an orbital period of 1310 days. However, radial velocity (RV) observations of KIC 5951458 from the HIRES instrument on the Keck telescope suggest that the system is far more complicated. To extract precise RVs for this star, we develop a novel matched-template technique that takes advantage of a broad library of template spectra acquired with HIRES. We validate this technique and measure its noise floor to be 4–8 m s−1 (in addition to internal RV error) for most stars that would be targeted for precision RVs. For KIC 5951458, we detect a long-term RV trend that suggests the existence of a stellar companion with an orbital period greater than a few thousand days. We also detect an additional signal in the RVs that is possibly caused by a planetary or brown dwarf companion with mass in the range of 0.6–82 M Jup and orbital period below a few thousand days. Curiously, from just the data on hand, it is not possible to determine which object caused the single “transit” event. We demonstrate how a modest set of RVs allows us to update the properties of this unusual system and predict the optimal timing for future observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call