Abstract

Abstract The nonlinear collision of two western boundary currents (WBCs) of Munk thickness LM colliding near a gap of width 2a is studied using a 1.5-layer, reduced-gravity, quasigeostrophic ocean model. The work is a continuation of our recent study on nonlinear collision of two equal-strength WBCs at a wide gap. It is found that, for narrow gaps, a < 5.7LM, and both of the WBCs fail to penetrate into the western basin due to the restriction of friction; for intermediate size gaps, 5.7LM ≤ a < 9.6LM, and multiple equilibrium states exist for the colliding WBCs: the penetrating state, the choking state, and the eddy-shedding state. The current system transits between them through a hysteresis procedure, with transitions at different Reynolds numbers from those in the equal-transport case. The stronger WBC tends to intrude more deeply into the western basin than the weaker WBC; for wide gaps, a > 9.6LM, and only penetrating and eddy-shedding states exist. No choking state is identified for either WBC. It is found that the critical gap width for the disappearance of the choking state decreases with the asymmetry of the WBC system. The theory is used to explain some of the circulation features at the entrance of the Indonesian Throughflow in the western Pacific Ocean recently observed with satellite-tracked surface drifters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.