Abstract

This study aims to clarify the biochemical nature and interactions of Extracellular Polymeric Substances (EPS) involved in the structure and cohesive properties of aerobic granules. Granules were incubated with selective hydrolytic enzymes or with chemicals and the resistance of digested granules to shear stress was evaluated. After α-amylase digestion, the hydrodynamic stress released macro-particles (>315μm) while soluble molecules (<1.5μm) and micro-particles (1.5–315μm) where mainly recovered after savinase and EDTA treatments. These data show that α (1–4) glucans and proteins are key polymers for granule cohesion and that divalent cationic bridging is a major aggregative mechanism.On the basis of these experiments and microscopy observations, a model is proposed for the spatial organization of EPS in the granular structure, in which α glucans are arranged in a capsular layer surrounding bacterial clusters while anionic proteins constitute the intercellular cement that may reinforce cohesion inside the bacterial clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.