Abstract

Long-alkyl tail triphenylene (TP) side-chain liquid crystalline polymers (SCLCPs) with different spacer length (P-m-TP, m = 2, 3, 4, 6, 8, which is the number of carbon atom in the flexible alkyl spacers) have been successfully synthesized via free radical polymerization. The differential scanning calorimetry (DSC), polarized light microscopy (POM), ultraviolet-visible spectroscopy (UV-Vis), wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) measurements were performed to investigate the influence of multiple effects on the self-organization behaviors of P-m-TP, including steric effect, decoupling effect and π-π stacking effect. The experimental results revealed that P-m-TP (m = 2, 3, 4) formed the columnar phase which was developed by the TP moieties and the main chain as a whole, suggesting that the side-chains had strong steric effect even though the number of spacer length (m) exceeded 4. In addition, the clearing points (Tis) of the polymers were above 300 °C. When m = 6 and 8, the polymers displayed hexagonal columnar phase and exhibited the low Tis (91 and 80 °C respectively), originating from the self-assembly of triphenylene due to the decoupling effect and π-π stacking effect. This work offers a viable and inspiring pathway to control the phase transition temperature and phase structure of TP SCLCPs via simply tailoring the spacer length and increasing the alkyl tail length of TP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call