Abstract

Iodoacetate, over the range 0.2–2 mM, stimulated the uptake of d-xylose by rat soleus muscle and inhibited anaerobic lactate production by soleus muscle. Stimulation of sugar transport is considered to be due to the resultant fall in ATP. p-Chloromercuribenzene sulphonate (0.5–2 mM) stimulated xylose uptake to a lesser extent than iodoacetate and induced a proportionately smaller fall in ATP, consistent with the inhibitory effect of p-chloromercuribenzene sulphonate on lactate production. Under certain conditions, p-chloromercuribenzene sulphonate stimulated sugar transport without affecting the ATP level. This suggests that whereas p-chloromercuribenzene sulphonate can be expected to stimulate sugar transport through the lowering of muscle ATP, it may also act through some other mechanism. No stimulatory effect on xylose uptake was observed when muscles were exposed to N-ethylmaleimide (0.02–2 mM) either for brief (1 min) or more prolonged (30 min) periods. Because N-ethylmaleimide induced a marked fall in muscle ATP, it is surprising that N-ethylmaleimide did not stimulate sugar transport; in most experiments this inhibitor actually inhibited sugar transport. N-Ethylmaleimide inhibited the stimulation of sugar transport by 2,4-dinitrophenol and anoxia; this inhibitory effect appears to explain why N-ethylmaleimide itself did not stimulate sugar transport. p-Chloromercuribenzene sulphonate also inhibited 2,4-dinitrophenol-stimulated xylose uptake by a mechanism which seems similar to that of N-ethylmaleimide; this could explain in part the modest stimulatory effect of this inhibitor on muscle sugar transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.