Abstract

Prolonged inflammation and excessive neovascularization of the cornea due to severe injury can impair optical clarity and lead to vision impairment. Plasminogen kringle (K) fragments, known as angiostatins (AS), play a well-established role as inhibitors of neovascularization by suppressing pro-angiogenic signaling­. However, AS effects in the cornea, beyond inhibiting the angiogenesis, are still unexplored. In this study, we estimate the protective effect of two AS variants (K1-3 and K5) against alkali burn injury induced in rabbit and rat corneas. AS K1-3 in the single doses of 0.075 or 0.75 μg (0.1 or 1.0 μM, respectively) or 0.3 μg of AS K5 (1.0 μM) were applied locally as eye drops daily for 14 days after the injury. A significant regression of corneal vessels in-growth in injured eyes treated with AS was revealed. Western blot analysis of corneal tissue lysates revealed that injury-induced overexpression of protein markers­ of hypoxia (HIF-1α), angiogenesis (VEGF), tissue remodeling and fibrosis (MMP-9), autophagy (beclin-1) and endoplasmic reticulum stress (GRP-78) was significantly reduced under AS treatment. Besides, the level of tight junctions protein ZO-1 was shown to be up-regulated after the treatment of the damaged cornea with AS K1-3. Summarizing, our study uncovered novel biological functions of the kringle-containing plasminogen fragments indicating its beneficial effects during corneal healing in the experimental model of alkali burn. The data obtained can be helpful for the development of novel efficient formulations to manage complications of ocular surface injuries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.