Abstract

4-aminopyridine (4-AP) is commonly used to block the transient outward potassium current, I(to), in cardiac and noncardiac tissues. In the present work, we found that 4-AP inhibited the rapid component of the delayed rectifier potassium current, I(Kr), in rabbit-isolated sinoatrial node myocytes by 25% (1 mM) and 51% (5 mM) and inhibited the slow component of the delayed rectifier potassium current, I(Ks), in cat- isolated sinoatrial node myocytes by 39% (1 mM) and 62% (5 mM). In cat- and rabbit-isolated sinoatrial node myocytes, 4-AP activated muscarinic receptors in a voltage-dependent manner to increase the acetylcholine-activated potassium current, I(KACh). In multicellular preparations of the central region of the sinoatrial node from nonreserpinized rabbits, 4-AP produced an increase in action potential overshoot, frequency, and rate of diastolic depolarization. In the presence of the beta-adrenergic antagonist propranolol, 4-AP produced a marked increase in duration and a marked decrease in maximum diastolic potential and eventually, cessation of the spontaneous activity in preparations from the sinoatrial central region. In multicellular preparations from reserpinized rabbits, 4-AP produced similar effects to those observed in the presence of propranolol. We conclude that 4-AP inhibits multiple cardiac K(+) currents, including I(to), I(Kr), and I(Ks), and that these activities mask I(KACh) activation. In addition, in multicellular preparations, 4-AP produces neurotransmitter release from the autonomic nerve terminals. These multiple effects need to be considered when using 4-AP as a "specific" I(to) blocker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call