Abstract

Mo6+ doping increases the photoelectrochemical performance of BiVO4 photoanodes in water oxidation. Herein, the underlying mechanisms is elucidated through a systematic structural, morphological, and photoelectrochemical investigation on photoelectrodes of pure and Mo6+ doped BiVO4 prepared by a novel multistep spin‐coating deposition approach, leading to multilayer flat films with high optical transparency. Transient absorption spectroscopy in the nano‐ to microsecond time scale reveals a longer lifetime of photogenerated holes in the doped films. Besides confirming that Mo6+ ions improve the electron transport in the material bulk, impedance spectroscopy also reveals the crucial role of the dopant on the surface properties of BiVO4 photoanodes. The presence of intra‐bandgap states, acting as traps of photogenerated charge carriers in pure BiVO4, is detected through the build‐up of the interfacial surface state capacitance. The limited activity of pure BiVO4 in water oxidation is largely improved upon 3 at% Mo6+ incorporation, ensuring a more efficient charge carrier transport with respect to pure BiVO4, together with the beneficial passivation of its trap surface states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.