Abstract

In this wok, based on the non-Fourier C-V model, the problem for multiple edge cracks is investigated for a coating-substrate pair subjected to a sudden temperature drop at the surface of coating. The temperature and resulting thermal stresses without cracks are obtained by the method of Laplace transform. By numerically solving the singular integral equations, the thermal stress intensity factors (SIFs) are evaluated. The results from the Fourier model and C-V heat conduction model are presented for comparison. Two dimensionless quantities are proposed to account for the coupling effects of heat conduction parameters (i.e., thermal conductivity, thermal diffusivity, and thermal relaxation time). Numerical results are presented for the thermal SIF as a function of normalized quantities such as time, crack depth, material constants and crack spacing. The findings in this work are expected to provide references for maintaining the integrity of the coating-substrate pair in the extreme heat transfer applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.