Abstract
Doravirine is a nonnucleoside reverse transcriptase inhibitor in clinical development for the treatment of human immunodeficiency virus-1 infection in combination with other antiretroviral therapies. The cytochrome P450 (CYP)3A-dependent metabolism of doravirine makes it susceptible to interactions with modulators of this pathway, including the antituberculosis treatment rifampin. Rifabutin, an alternative antibiotic used to treat tuberculosis, may have a lower-magnitude effect on CYP3A. The aim of this trial was to determine the effect of steady-state rifabutin on doravirine single-dose pharmacokinetics and tolerability. In this open-label, 2-period, fixed-sequence, drug-drug interaction study, healthy subjects received a single dose of doravirine 100mg alone and coadministered on day 14 of once-daily administration of rifabutin 300mg for 16 days. Plasma samples were taken to determine doravirine pharmacokinetics, and safety was monitored throughout. Dose adjustment of doravirine in the presence of coadministered rifabutin was explored through nonparametric superposition analysis. Rifabutin reduced doravirine area under the concentration-time curve from time zero to infinite and plasma drug concentration 24 hours postdose with geometric mean ratios ([rifabutin+doravirine]/[doravirine alone]) (90%CIs) of 0.50 (0.45-0.55) and 0.32 (0.28-0.35), respectively. Doravirine apparent clearance increased from 5.9L/h without rifabutin to 12.2L/h when coadministered. Doravirine pharmacokinetics with and without coadministered rifabutin were not equivalent. Nonparametric superposition analysis projected that administration of doravirine 100mg twice daily with rifabutin will restore steady-state trough concentration values to efficacious levels associated with doravirine 100mg once daily in the absence of CYP3A inducers. Doravirine may be coadministered with rifabutin when the doravirine dose frequency is increased from 100mg once daily to 100mg twice daily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.