Abstract

The interaction of water molecule with catalysts is crucial to photocatalysis, but the surface property manipulation still remains a great challenge. In this study, we report an in situ multiple heteroelement (sodium, oxygen, and iodide) doping strategy based on a molten salt-assisted route to prepare a green-colored carbon nitride (GCN). The as-prepared GCN yields 25.5 times higher H2 evolution rate than that of bulk polymeric carbon nitride under visible light. Experimental characterization data demonstrate that the GCN delivers upshift of the conduction band and increased specific surface area and hydrophilicity. As confirmed by time-resolved PL spectra, DMPO spin-trapping EPR analysis, and so on, the excellent activity is dominantly ascribed to the greatly enhanced hydrophilicity and, subsequently, efficient interfacial charge transfer and hydrogen liberation. Moreover, through surface charge modification, the GCN also shows an increased degradation activity of rhodamine B. This work highlights the importance of surface modulation through multiple earth-abundant element incorporation for designing of advanced and practical photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.