Abstract

Xanthomonas arboricola pv. juglandis (Xaj) is the etiological agent of walnut (Juglans regia L.) bacterial blight (WBB), and has been associated to other walnut emerging diseases, namely brown apical necrosis (BAN) and vertical oozing canker (VOC), altogether severely affecting the walnut production worldwide. Despite the research efforts carried out to disclose Xaj genetic diversity, reliable molecular methods for rapid identification of Xaj isolates and culture-independent detection of Xaj in infected plant samples are still missing. In this work, we propose nine novel specific DNA markers (XAJ1 to XAJ9) selected by dedicated in silico approaches to identify Xaj isolates and detect these bacteria in infected plant material. To confirm the efficacy and specificity of these markers, dot blot hybridization was carried out across a large set of xanthomonads. This analysis, which confirmed the pathovar specificity of these markers, allowed to identify four broad-range markers (XAJ1, XAJ4, XAJ6, and XAJ8) and five narrow-range markers (XAJ2, XAJ3, XAJ5, XAJ7, and XAJ9), originating 12 hybridization patterns (HP1 to HP12). No evident relatedness was observed between these hybridization patterns and the geographic origin from which the isolates were obtained. Interestingly, four isolates that clustered together according the gyrB phylogenetic analysis (CPBF 1507, 1508, 1514, and 1522) presented the same hybridization pattern (HP11), suggesting that these nine markers might be informative to rapidly discriminate and identify different Xaj lineages. Taking into account that a culture-independent detection of Xaj in plant material has never been described, a multiplex PCR was optimized using markers XAJ1, XAJ6, and XAJ8. This triplex PCR, besides confirming the dot blot data for each of the 52 Xaj, was able to detect Xaj in field infected walnut leaves and fruits. Altogether, these nine Xaj-specific markers allow conciliating the specificity of DNA-detection assays with typing resolution, contributing to rapid detection and identification of potential emergent and acutely virulent Xaj genotypes, infer their distribution, disclose the presence of this phytopathogen on potential alternative host species and improve phytosanitary control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.