Abstract

Abstract Immobilized metal ions have been used to characterize and locate metal ion-specific binding domains on the surface of the DNA-binding form of the estrogen receptor protein. Soluble estrogen receptors in calf uterine cytosol were labeled with [3H]estradiol and transformed to the DNA-binding configuration by brief exposure (30 min) to 3 M urea at 0-4 degrees C. The transformed receptors were purified in the presence of 3 M urea using single-stranded calf thymus DNA-agarose and characterized by high-performance size-exclusion chromatography (Stokes radius of 7.0-7.5 nm) and sucrose density gradient centrifugation (4.25 S) as dimers of 130,000 Da. Such receptor preparations subsequently labeled with [3H]desmethylnafoxidine aziridine by ligand exchange revealed one major peak of radioactivity (67 kDa) by sodium dodecyl sulfate polyacrylamide gradient gel electrophoresis. When analyzed by immobilized metal ion affinity chromatography on iminodiacetate (IDA)-agarose loaded with Cu(II), Ni(II), or Zn(II) ions, the receptor was bound with various degrees of affinity and metal interaction heterogeneity even in the presence of 0.5 M NaCl to neutralize electrostatic interactions. The intact DNA-binding receptor dimers were most tightly bound to IDA-Cu(II) and IDA-Ni(II), but were eluted with 100-200 nM imidazole. The receptors were bound less tightly to IDA-Zn(II), and four separate peaks of receptor activity were resolved by elution with 10, 15, 30, and 100 mM imidazole (n = 27). Limited trypsin digestion of the DNA-binding receptor forms resulted in the generation of a 2.8-nm fragment with both the DNA-binding and metal-binding domains removed or destroyed. These results demonstrate that DNA-binding estrogen receptor dimers have high affinity metal ion-binding sites which are located at the DNA-binding domain. We have found (Zn(II) interaction chromatography to be unique thus far in its ability to resolve separate DNA-binding receptor forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.