Abstract

This paper analyzes the introduction of multiple central cuts in a conic formulation of the analytic center cutting plane method (in short ACCPM). This work extends earlier work on the homogeneous ACCPM, and parallels the analysis of the multiple cut process in the standard ACCPM. The main issue is the calculation of a direction that restores feasibility after introducing p new cutting planes at the query point. We prove that the new analytic center can be recovered in O(p log ωp) damped Newton iterations, where ω is a parameter depending of the data. We also present two special cases where the complexity can be decreased to O (p log p). Finally, we show that the number of calls to the oracle is the same as in the single cut case, up to a factor \sqrt{p}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.