Abstract

This paper considers a truck scheduling problem in a multiple cross docks while there is temporary storage in front of the shipping docks. Receiving and shipping trucks can intermittently move in and out of the docks during the time intervals between their task execution, in which trucks can enter to any of the cross docks. Thus, a mixed-integer programming (MIP) model for multiple cross docks scheduling is developed inspired by models in the body of the respective literature. Its objective is to minimize the total operation time or maximize the throughput of the cross-docking system. Moreover, additional concepts considered in the new method is multiple cross docks with a limited capacity. In this study, there are two types of delay times. The first type occurs when there is a shipping truck change and the second one occurs when the current shipping truck does not load any product from a certain receiving truck or temporary storage and waits until its needed products arrive at the shipping docks. To solve the developed model, two meta-heuristics, namely simulated annealing (SA) and firefly algorithms (FA), are proposed. In addition, a procedure for trucks scheduling in a state of a constant discrete firefly algorithm for the discrete adaptation has been proposed. The experimental design is carried out to tune the parameters of algorithms. Finally, the solutions obtained by the proposed SA and FA are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.