Abstract
This paper presents a numerical approach for modeling multiple crack fatigue growth in a plane elastic infinite plate. It involves a generation of Bueckner’s principle, a displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author and an extension of Paris’ law to a multiple crack problem under mixed-mode loading. Because of an intrinsic feature of the boundary element method, a general multiple crack growth problem can be solved in a single-region formulation. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not necessary. Crack extension is conveniently modeled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. Fatigue growth modeling of an inclined crack in an infinite plate under biaxial cyclic loads is taken into account to illustrate the effectiveness of the present numerical approach. As an example, the present numerical approach is used to study the fatigue growth of three parallel cracks with same length under uniaxial cyclic load. Many numerical results are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.