Abstract
Objectives The aim of this study was to explore the correlations between the Knoop hardness, Young's modulus, viscosity, and polymerization shrinkage of an experimental dental composite, in order to determine the temporal variations of the material properties during the polymerization process. Methods The digital image correlation method was employed to measure the polymerization shrinkage along the curing depth of bar-shape specimens (cross-section 4 mm × 2 mm and length 10 mm) of an experimental composite RZE045. The shrinkage data were correlated with the Knoop microhardness measured on specimens prepared in consistent conditions. Another series of tests were performed on cuboid composite samples (cross-section 4 mm × 4 mm and height 5 mm) with different degrees of conversions to determine the correlations among microhardness, Young's modulus and viscosity. Further correlations between shrinkage, Young's modulus and viscosity were then derived, from which the temporal variations of the mechanical parameters during curing were estimated. Results Along the curing depth, the Knoop microhardness of the experimental composite RZE045 decreased more rapidly than its volumetric shrinkage. A power function was employed to describe their relation. On the other hand, Knoop microhardness was found to be proportional to Young's modulus and viscosity. These linear correlations also seemed to be applicable to other materials including unfilled resins, silica glass and other dental composites. Significance Correlations between material parameters of dental composites allowed the rapid temporal variations of Young's modulus and viscosity during curing to be estimated based on the measured polymerization shrinkage-strain history.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.