Abstract
Mobile crowdsensing, a new paradigm, has drawn much attention from the online community, in which mobile users are connected by using smartphones with sharing of information via mobile social networks. Multiple cooperative task allocation (MCTA) is a crucial problem in mobile crowdsensing, where each task requires more than one user to cooperatively complete. As more and more users join sensing tasks in groups, it is indispensable to develop a group-oriented crowdsensing mechanism supporting MCTA. However, existing studies generally focus on a group that can provide sufficient users to accomplish a task. Once these groups no longer exist, the corresponding task will be discarded or be performed with compromised quality. In this article, we propose a novel three-phase approach named Group-oriented Cooperative Crowdsensing (GoCC) to tackle the MCTA problem in social mobile crowdsensing. This approach exploits real-life relationships in the social network to form compatible groups, which improves the task coverage via group-oriented cooperation while achieving good task cooperation quality. Specifically, phase 1 selects a subset of users on the social network as initial leaders and directly pushes sensing tasks to them. Phase 2 utilizes the leaders to search for their socially connected users to model groups. Phase 3 presents the process of group-oriented task allocation for solving the MCTA problem. Experiments on the real-world dataset validate that our approach significantly outperforms the representative approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.