Abstract

E1/U17 small nucleolar RNA (snoRNA) is a box H/ACA snoRNA. To identify E1 RNA elements required for its assembly into a ribonucleoprotein (RNP) particle, we have made substitution mutations in evolutionarily conserved sequences and structures of frog E1 RNA. After E1 RNA was injected into the nucleus of frog oocytes, assembly of this exogenous RNA into an RNP was monitored by non-denaturing gel electrophoresis. Unexpectedly, nucleotide substitutions in many phylogenetically conserved segments of E1 RNA produced RNPs with abnormal gel-electrophoresis patterns. These RNA segments were at least nine conserved sequences and an apparently conserved structure. In another region needed for RNP formation, the requirement may be sequence(s) and/or structure. Base substitutions in each of these and in one additional conserved E1 RNA segment reduced the stability of this snoRNA in frog oocytes. Nucleolar localization was assayed by fluorescence microscopy after injection of fluorescein-labelled RNA. The H box (ANANNA) and the ACA box are both needed for efficient nucleolar localization of frog E1 RNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.