Abstract
AbstractAsymptotically correct 90 and 95 percentage points are given for multiple comparisons with control and for all pair comparisons of several independent samples of equal size from polynomial distributions. Test statistics are the maxima of the X2‐statistics for single comparisons. For only two categories the asymptotic distributions of these test statistics result from DUNNETT'S many‐one tests and TUKEY'S range test (cf. MILLER, 1981).The percentage points for comparisons with control are computed from the limit distribution of the test statistic under the overall hypothesis H0. To some extent the applicability of these bounds is investigated by simulation. The bounds can also be used to improve Holm's sequentially rejective Bonferroni test procedure (cf. HOLM, 1979).The percentage points for all pair comparisons are obtained by large simulations. Especially for 3×3‐tables the limit distribution of the test statistic under H0 is derived also for samples of unequal size. Also these bounds can improve the corresponding Bonferroni‐Holm procedure.Finally from SKIDÁK's probability inequality for normal random vectors (cf. SKIDÁK, 1967) a similar inequality is derived for dependent X2‐variables applicable to simultaneous X2‐tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.