Abstract

Glucokinase (GK) activity, which is rapidly regulated by glucokinase regulatory protein (GKRP) in the liver, is crucial for blood glucose homeostasis. In this paper, the GK activation mechanisms of 1-deoxynojrimycin (DNJ), resveratrol (RES), oxyresveratrol (OXY), cyanidin-3-glucoside (C3G), and cyanidin-3-rutinoside (C3R) were compared. The results revealed that DNJ, RES, C3G, and C3R could differently improve glucose consumption and enhance intracellular GK activities. DNJ and RES significantly promoted GK translocation at 12.5 μM, whereas other ingredients showed moderate effects. DNJ, C3G, and C3R could rupture intramolecular hydrogen bonds of GK to accelerate its allosteric activation at early stage. RES and OXY could bind to a "hydrophobic pocket" on GK to stabilize the active GK at the final stage. Otherwise, RES, OXY, C3G, and C3R could interact with GKRP at the F1P binding site to promote GK dissociation and translocation. Enzymatic assay showed that RES (15-50 μM) and OXY (25-50 μM) could significantly enhance GK activities, which was caused by their binding properties with GK. Moreover, the most dramatic up-regulation effects on GK expression were observed in C3G and C3R groups. This work expounded the differences between GK activation mechanisms, and the new findings would help to develop new GK activators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.