Abstract
Let (A,Λ) be a formring such that A is quasi-finite R-algebra (i.e., a direct limit of module finite algebras) with identity. We consider the hyperbolic Bak’s unitary groups GU(2n, A, Λ), n ≥ 3. For a form ideal (I, Γ) of the form ring (A, Λ) we denote by EU(2n, I, Γ) and GU(2n, I, Γ) the relative elementary group and the principal congruence subgroup of level (I, Γ), respectively. Now, let (I i , Γ i ), i = 0,...,m, be form ideals of the form ring (A, Λ). The main result of the present paper is the following multiple commutator formula: [EU(2n, I 0, Γ 0),GU(2n, I 1, Γ 1), GU(2n, I 2, Γ 2),..., GU(2n, I m , Γ m )] =[EU(2n, I 0, Γ 0), EU(2n, I 1, Γ 1), EU(2n, I 2, Γ 2),..., EU(2n, I m , Γ m )], which is a broad generalization of the standard commutator formulas. This result contains all previous results on commutator formulas for classicallike groups over commutative and finite-dimensional rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.