Abstract

In this paper, we study the effect of time-periodic coupling strength (TPCS) and network connection degree ⟨k⟩ on the temporal coherence of the chaotic bursting of the scale-free networks of thermo-sensitive neurons. It is found that the chaotic bursting becomes ordered and can exhibit coherence resonance (CR) when TPCS amplitude e0 or the network connection degree ⟨k⟩ is varied. In particular, the neuronal bursting may exhibit multiple CR (MCR) behavior when TPCS frequency ω is varied. It is also found that, as ⟨k⟩ is increased, the value of e0 for the MCR decreases, but the frequency for the MCR almost keeps unchanged. These results show that the chaotic bursting can be tamed and the bursting temporal coherence can be enhanced and even optimized by TPCS and network connection degree. Furthermore, TPCS can repetitively enhance and even optimize the temporal coherence of the neuronal bursting behavior. These findings may help to better understand the roles of TPCS and network connection degree for improving the time precision of the information processing in neuronal networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call