Abstract

This paper is devoted to a study on closed geodesics on Finsler and Riemannian spheres. We call a prime closed geodesic on a Finsler manifold rational, if the basic normal form decomposition (cf. [Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math. 187 (1999) 113–149]) of its linearized Poincaré map contains no 2 × 2 rotation matrix with rotation angle which is an irrational multiple of π, or irrational otherwise. We prove that if there exists only one prime closed geodesic on a d-dimensional irreversible Finsler sphere with d ⩾ 2 , it cannot be rational. Then we further prove that there exist always at least two distinct prime closed geodesics on every irreversible Finsler 3-dimensional sphere. Our method yields also at least two geometrically distinct closed geodesics on every reversible Finsler as well as Riemannian 3-dimensional sphere. We prove also such results hold for all compact simply connected 3-dimensional manifolds with irreversible or reversible Finsler as well as Riemannian metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.