Abstract

Nonlinear evolution equations (NLEEs) of fractional order play important role to explain the inner mechanisms of complex phenomena in various fields of the real world. In this article, nonlinear evolution equations of fractional order; namely, the (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, the time fractional biological population model and the space-time fractional modified regularized long-wave equation are revealed for seeking closed form analytic solutions. The offered equations are first transformed into ordinary differential equations of integer order with the help of a suitable composite transformation and the conformable fractional derivative. Then the rational $(G'/G)$-expansion method, which is reliable, efficient and computationally attractive, is employed to construct the traveling wave solutions successfully. The obtained solutions are appeared to be exact, much more new and general than the existing results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.