Abstract

Ultrafast charge-transfer (CT) dynamics has been verified in CsPbBr3 (CPB) quantum dot (QD)–4,5-dibromofluorescein (DBF) composite materials, which form a strong CT complex in the ground state and can absorb more photons in the red region of the solar spectrum. Cyclic voltammetry and steady state luminescence studies suggest that the conduction (CB) and valence bands (VB) of CPB lie, respectively, below the LUMO and the HOMO of the DBF molecule. Steady state and time-resolved luminescence measurements with selective photoexcitation reveal the photoexcited hole transfer from CPB QDs to the DBF molecule, which is thermodynamically viable. Additionally, a red-shifted PL band was detected upon excitation of the CT complex that has been attributed to CT luminescence. Femtosecond transient absorption measurements have been performed to measure the hole transfer and direct electron transfer processes in the composite system and have been measured to be 1–1.25 ps and <100 fs, respectively. Dual behavior of the DB...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call