Abstract

Two possible ways of creating multiple-charge deep levels of d-metal ions in semiconductors are considered. The case of the different charge states corresponding to the different d-shell configurations is discussed with respect to transition-metal ions in AIIBVI and AIIIBV compounds. A model in which the double-charge states are created without d-valence change is proposed for noble metal impurities. In this case the wavefunction of the first electron in the impurity level is the superposition of the d shell and valence band states, and the wavefunction of the second localised electron is made only of the band states. The authors discuss also the occupation rules for the impurity levels and show that one obtains a wrong distribution function for the localised electron when one uses the Hartree approximation for the d-d correlation energy U. The true 'atomic' distribution function can be obtained including U in zero approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.