Abstract
The slopes of the pH-rate profiles for the cyclization of 2-methyl- and 2,3-dimethyl hydantoates 1-NPU and 2-NPU between pH 1 and 7 change from 1 to 0 and then back to 1. A reaction first order in H+ was observed with the latter compound. The 2,2,3-trimethyl derivative 3-NPU showed only one reaction first order in OH-, but complex acid catalysis is described by slopes 0, -1, 0, and finally -1 again. The cyclizations were general base catalyzed, with Brønsted β values of 0.5-0.6. The OH- catalysis at higher pH for 1-NPU and 2-NPU showed inverse solvent kinetic isotope effects and deviated from the Brønsted relationships, while that for 3-NPU showed a normal effect and complied with the Brønsted relationship. The accelerations due to the gem-dimethyl effect were lost with the OH- and general base-catalyzed reactions of 3-NPU. This behaviour is due to a change from the rate-determining formation of the tetrahedral intermediate with 1-NPU and 2-NPU to the rate-determining breakdown with 3-NPU, due to steric hindrance to protonation of the leaving ethoxy group. The OH- reaction at higher pH involves attack of the ureide anion with 1-NPU and 2- NPU, becoming concerted with deprotonation when catalyzed by general bases and changing to acid inhibition of the anion of the tetrahedral intermediate at low pH. With 3-NPU at higher pH, T- is in equilibrium and the conjugate acids of the general bases accelerate its breakdown by protonating the ethoxy group. Acid catalysis of the cyclization of 3-NPU at higher pH is also protonation of the leaving group from T0 changing to the rate-determining formation of T at lower pH. The latter mechanism is preferred for the cyclization of 2-NPU.Key words: gem-dimethyl effect, mechanism, general base catalysis, proton transfer, steric hindrance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.