Abstract

Detoxification of hydrogen peroxide is a fundamental aspect of the cellular antioxidant responses in which catalases play a major role. Two differentially regulated catalase genes, catA and catB, have been studied in Aspergillus nidulans. Here we have characterized a third catalase gene, designated catC, which predicts a 475-amino-acid polypeptide containing a peroxisome-targeting signal. With a molecular mass of 54 kDa, CatC shows high similarity to other small-subunit monofunctional catalases and is most closely related to catalases from other fungi, Archaea, and animals. In contrast, the CatA (approximately 84 kDa) and CatB (approximately 79 kDa) enzymes belong to a family of large-subunit catalases, constituting a unique fungal and bacterial group. The catC gene displayed a relatively constant pattern of expression, not being induced by oxidative or other types of stress. Targeted disruption of catC eliminated a constitutive catalase activity not detected previously in zymogram gels. However, a catalase activity detected in catA catB mutant strains during late stationary phase was still present in catC and catABC null mutants, thus demonstrating the presence of a fourth catalase, here named catalase D (CatD). Neither catC nor catABC triple mutants showed any developmental defect, and both mutants grew as well as wild-type strains in H(2)O(2)-generating substrates, such as fatty acids, and/or purines as the sole carbon and nitrogen sources, respectively. CatD activity was induced during late stationary phase by glucose starvation, high temperature, and, to a lesser extent, H(2)O(2) treatment. The existence of at least four differentially regulated catalases indicates a large and regulated capability for H(2)O(2) detoxification in filamentous fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.