Abstract

In this paper, a novel magnetoelectric (ME) composite structure is proposed, and the ME response in the structure is measured at the bias magnetic field up to 2000 Oe (1 Oe = 79.5775 A·m−1) and the excitation frequency of alternating magnetic field ranging from 1 kHz to 200 kHz. The ME voltage of each PZT layer is detected. According to the measurement results, the phase differences are observed among three channels and the multi-peak phenomenon appears in each channel. Meanwhile, the results show that the ME structure can stay a relatively high ME response within a wide bandwidth. Besides, the hysteretic loops of three PZT layers are observed. When the frequency of alternating current (AC) magnetic field changes, the maximum value of ME coefficient appears in different layers due to the multiple vibration modes of the structure. Moreover, a finite element analysis is performed to evaluate the resonant frequency of the structure, and the theoretical calculating results accord well with the experimental results. The experiment results suggest that the proposed structure may be a good candidate for designing broadband magnetic field sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.