Abstract

Symmetric Bragg-case reflections from a thick, ideally imperfect, crystal slab are studied mostly by analytical means. The scattering transfer function of a thin mosaic layer is derived and brought into a form that allows for analytical approximations or easy quadrature. The Darwin-Hamilton equations are generalized, lifting the restriction of wavevectors to a two-dimensional scattering plane. A multireflection expansion shows that wavevector diffusion can be studied independently of the real-space coordinate. Combining analytical arguments and Monte Carlo simulations, multiple Bragg reflections are found to result in a minor correction of the reflected intensity, a moderate broadening of the reflected azimuth angle distribution, a considerable modification of the polar angle distribution, and a noticeable shift and distortion of rocking curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.