Abstract

Abstract This paper focuses on multiple bifurcations of a cylindrical dynamical system, which is evolved from a rotating pendulum with SD oscillator. The rotating pendulum system exhibits the coupling dynamics property of the bistable state and conventional pendulum with the ho- moclinic orbits of the first and second type. A double Andronov-Hopf bifurcation, two saddle-node bifurcations of periodic orbits and a pair of homoclinic bifurcations are detected by using analytical analysis and nu- merical calculation. It is found that the homoclinic orbits of the second type can bifurcate into a pair of rotational limit cycles, coexisting with the oscillating limit cycle. Additionally, the results obtained herein, are helpful to explore different types of limit cycles and the complex dynamic bifurcation of cylindrical dynamical system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.