Abstract

We discuss the Jukes and Cantor's one-parameter model and Kimura's two-parameter model unability to describe evolution of asymmetric DNA molecules. The standard distance measure between two DNA sequences, which is the number of substitutions per site, should include the effect of multiple base substitutions separately for each type of the base. Otherwise, the respective tables of substitutions cannot reconstruct the asymmetric DNA molecule with respect to the composition. Basing on Kimura's neutral theory, we have derived a linear law for the correlation of the mean survival time of nucleotides under constant mutation pressure and their fraction in the genome. According to the law, the corrections to Kimura's theory have been discussed to describe evolution of genomes with asymmetric nucleotide composition.We consider the particular case of the strongly asymmetric Borrelia burgdorferi genome and we discuss in detail the corrections, which should be introduced into the distance measure between two DNA sequences to include multiple base substitutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.