Abstract

This paper investigates the impact characteristics of the 4 November 2021 magnetic storm across different frequency bands based on the electric field data (EFD) from the China Seismo-Electromagnetic Satellite (CSES), categorized into four frequency bands: ULF (Ultra-Low-Frequency, DC to 16 Hz), ELF (Extremely Low-Frequency, 6 Hz to 2.2 kHz), VLF (Very Low-Frequency, 1.8 to 20 kHz), and HF (High-Frequency, 18 kHz to 3.5 MHz). The study reveals that in the ULF band, magnetic storm-induced electric field disturbances are primarily in the range of 0 to 5 Hz, with a significant disturbance frequency at 3.9 ± 1.0 Hz. Magnetic storms also enhance Schumann waves in the ULF band, with 8 Hz Schumann waves dominating in the southern hemisphere and 13 Hz Schumann waves dominating in the northern hemisphere. In the ELF band, the more pronounced anomalies occur at 300 Hz–900 Hz and above 1.8 kHz, with the 300 Hz–900 Hz band anomalies around 780 Hz being the most significant. In the VLF band, the electric field anomalies are mainly concentrated in the 3–15 kHz range. The ELF and VLF bands exhibit lower absolute and relative disturbance increments compared to the ULF band, with the relative perturbation growth rate in the ULF band being approximately 10% higher than in the ELF and VLF bands. Magnetic storm-induced electric field disturbances predominantly occur in the ULF, ELF, and VLF bands, with the most significant disturbances in the ULF band. The electric field perturbations in these three frequency bands exhibit hemispheric asymmetry, with strong perturbations in the northern hemisphere occurring earlier than in the southern hemisphere, corresponding to different Dst minima. No electric field disturbances were observed in the HF band (above 18 kHz). The conclusions of this paper are highly significant for future anti-jamming designs in spacecraft and communication equipment, as well as for the further study of magnetic storms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.