Abstract

A classical predator-prey model is considered in this paper with reference to the case of periodically varying parameters. Six elementary seasonality mechanisms are identified and analysed in detail by means of a continuation technique producing complete bifurcation diagrams. The results show that each elementary mechanism can give rise to multiple attractors and that catastrophic transitions can occur when suitable parameters are slightly changed. Moreover, the two classical routes to chaos, namely, torus destruction and cascade of period doublings, are numerically detected. Since in the case of constant parameters the model cannot have multiple attractors, catastrophes and chaos, the results support the conjecture that seasons can very easily give rise to complex populations dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.