Abstract

Coexistence of Human-Type Communications (HTCs) and Machine-Type Communications (MTCs) is inevitable. Ultra-Dense Networks (UDNs) will be efficacious in supporting both types of communications. In a UDN, a massive number of low-power and low-cost Small Cells (SCs) are deployed with density higher than that of the HTC users. In such a scenario, the backhaul capacities constitute an intrinsic bottleneck for the system. Hence, we propose a multiple association scheme where each HTC user associates to and activates multiple SCs to overcome the backhaul capacity constraints mainly encountered in the downlink. In addition, having more active cells allows for more MTC devices to be supported by the network. Using tools from stochastic geometry, we formulate a novel mathematical framework investigating the performance of HTC in both downlink and uplink as well as the uplink MTC. Stretched Exponential Path Loss (SEPL) model is considered to practically reflect the UDN environment. Extensive simulations were conducted to verify the accuracy of the mathematical analysis under different system parameters. Results show the existence of an optimum number of SCs to which an HTC user may connect under backhaul capacity constraints. Besides, the proposed multiple-association scheme improves the performance of MTC in terms of both ASE and density of supported devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call