Abstract

Field experiments were conducted at Oakes, Absaraka, and Tappen, ND, in 2006 and repeated at Oakes and Absaraka, ND, in 2007 to evaluate early season weed control of common lambsquarters and redroot pigweed in onion with POST herbicides applied at multiple reduced rates (microrates) and to determine whether microrate herbicide treatments effectively reduced early season broadleaf weed competition, caused crop injury, or affected yield. Application rates of bromoxynil, oxyfluorfen, metribuzin, and acifluorfen were reduced to 0.25, 0.13, and 0.06× of their lowest labeled rate and applied in sequential applications (every 7 d) either two or three times. The 0.25× rate of bromoxynil (70.1 g ae/ha) provided the greatest control of common lambsquarters (95%). The 0.25× rates of bromoxynil and oxyfluorfen (70.1 g ai/ha) provided the greatest control of redroot pigweed (93 and 85%, respectively). Microrate applications of metribuzin or acifluorfen did not effectively control common lambsquarters or redroot pigweed. In 2006, no onion injury was observed. However, in 2007, applications of oxyfluorfen resulted in approximately 15% injury, regardless of the herbicide rate or the number of applications. Plants outgrew symptoms by 4 wk after treatment and were similar to the untreated plants. Onion treated with oxyfluorfen had the greatest total yield, followed by onion treated with bromoxynil. Onion treated with acifluorfen had a greater total marketable bulb yield than onion treated with metribuzin, but yield was considered poor compared to the other herbicide treatments. Three microrate applications provided greater weed control and increased yield compared with two applications across herbicides and rates. Results suggest that microrate applications of bromoxynil and oxyfluorfen will provide early season broadleaf weed control in onion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.