Abstract

Polycyclic aromatic hydrocarbons (PAH), such as benzo[a]pyrene (B[a]P), are ubiquitous genotoxic environmental pollutants. Their DNA-damaging effects lead to apoptosis induction, through similar pathways to those identified after exposure to other DNA-damaging stimuli with activation of p53-related genes and the involvement of the intrinsic apoptotic pathway. However, at a low concentration of B[a]P (50 nM), our previous results pointed to the involvement of intracellular pH (pHi) variations during B[a]P-induced apoptosis in a rat liver epithelial cell line (F258). In the present work, we identified the mitochondrial F0F1-ATPase activity reversal as possibly responsible for pHi decrease. This acidification not only promoted executive caspase activation, but also activated leucocyte elastase inhibitor/leucocyte-derived DNase II (LEI/L-DNase II) pathway. p53 appeared to regulate mitochondria homeostasis, by initiating F0F1-ATPase reversal and endonuclease G (Endo G) release. In conclusion, a low dose of B[a]P induced apoptosis by recruiting a large panel of executioners apparently depending on p53 phosphorylation and, for some of them, on acidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.