Abstract
In this paper, we consider the problem of spectrum sensing by using multiple antenna in cognitive radios when the noise and the primary user signal are assumed as independent complex zero-mean Gaussian random signals. The optimal multiple antenna spectrum sensing detector needs to know the channel gains, noise variance, and primary user signal variance. In practice some or all of these parameters may be unknown, so we derive the generalized likelihood ratio (GLR) detectors under these circumstances. The proposed GLR detector, in which all the parameters are unknown, is a blind and invariant detector with a low computational complexity. We also analytically compute the missed detection and false alarm probabilities for the proposed GLR detectors. The simulation results provide the available traded-off in using multiple antenna techniques for spectrum sensing and illustrates the robustness of the proposed GLR detectors compared to the traditional energy detector when there is some uncertainty in the given noise variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.