Abstract

One of the major causes of mortality all over the world is chronic obstructive pulmonary disease (COPD). Recently approved combined inhaler of formoterol fumarate (FF) and glycopyrronium bromide (GLY) has been used in very low concentrations (µg level/actuation) doses in COPD patients. The first spectrophotometric and advanced highly sensitive liquid chromatography has been achieved successfully throughout this study, permitting validated analysis of dual combined inhaler in raw material as well as pharmaceutical inhaled dosage form. Three sensitive analytical methods were carried out for the simultaneous assay of FF and GLY in their novel combined Metered dose inhaler (MDI). The first method depends on measuring the first derivative amplitudes at 208.27 nm for FF and at 213.27 nm and 239.86 nm for GLY, respectively. The second method depends on measurement of the first derivative of the ratio spectra at 214 or 229 nm for FF and 240 or 259 nm for GLY, respectively. For the spectrophotometric methods, the linearity ranges were 0.48–9.6 µg/mL for FF and 0.9–18 µg/mL for GLY. For the third method, valid ion-pairing chromatographic method was carried out applying C18 column and isocratic mobile phase of 60% v/v acetonitrile and 40% v/v deionized waster (pH 3.0) enclosing 0.025% sodium dodecyl sulfate, using UV detection adjusted to 210 nm and flow rate of 1.2 mL/min. For the ion-pairing chromatographic method, the linearity ranges were 0.048–4.8 µg/mL for FF and 0.09–9.0 µg/mL for GLY. The developed methods are reproducible, valid and offer efficient resolution between formoterol and glycopyrronium using spectrophotometric methods and highly sensitive and precise chromatographic method. The percent recoveries of the inhaled drugs in their MDI were good. The method was successfully established for the quantitative analysis of FF and GLY in their combined pharmaceutical inhaler capsules to validate the therapeutic efficiency of the combined drugs in quality control labs.

Highlights

  • Chronic obstructive pulmonary disease (COPD) represents a serious health problem affecting millions of people and it is the third causing of death in the world after ischemic heart diseases and stroke

  • First derivative spectrophotometry (DS) It was observed that formoterol fumarate (FF) possesses UV absorption spectra with two λmax at 217 nm and 252 nm, while Glycopyrronium bromide (GLY) possesses UV absorption spectra with two λmax at 210 nm and 222 nm in methanol

  • Simultaneous determination of FF and GLY solution in methanol using conventional UV spectrophotometry showed interference of the zero order absorption spectra between the two drugs which could be resolved by derivative and ratio derivative spectrophotometry in order to analyze the mixture of the two drugs in their pharmaceuticals

Read more

Summary

Introduction

Chronic obstructive pulmonary disease (COPD) represents a serious health problem affecting millions of people and it is the third causing of death in the world after ischemic heart diseases and stroke. Either methanol (in the spectrophotometric method) or mobile phase (in the IPC method) was added to achieve the working concentration ranges of combined drug solution. Construction of calibration graphs For the spectrophotometric methods, the concentration ranges of 0.48–9.6 μg/mL for formoterol fumarate and 0.9–18.0 μg/mL for glycopyrronium bromide were reached by accurate transfer of certain volumes of FF and GLY working solutions into volumetric flasks (10 mL).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.